CHIMIE

Durée 3 heures

L'usage d'une calculatrice est autorisé pour cette épreuve.

Chaque candidat est responsable de la vérification de son sujet d'épreuve : pagination et impression de chaque page. Ce contrôle doit être fait en début d'épreuve. En cas de doute, il doit alerter au plus tôt le surveillant qui vérifiera et éventuellement remplacera son sujet. Ce sujet comporte 13 pages numérotées de 1 à 13.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il a été amené à prendre.

Autour du nitrate d'ammonium

Le sujet comporte quatre parties indépendantes contenant chacune des questions indépendantes :

- Partie A : le nitrate d'ammonium, constituant principal des engrais chimiques
- Partie B : cause et traitement de la méthémoglobinémie
- Partie C : utilisation du chitosane comme dépolluant des eaux trop riches en ions nitrate
- Partie D : le nitrate d'ammonium, un explosif redoutable

Les données numériques utiles à chaque partie sont regroupées à la fin de l'énoncé (page 13).

Partie A: le nitrate d'ammonium, constituant principal des engrais chimiques

Les engrais sont des fertilisants qui apportent des substances nutritives aux plantes pour leur permettre une croissance optimale. Les éléments fertilisants majeurs contenus dans les engrais sont l'azote N, le phosphore P et le potassium K.

Le nitrate d'ammonium NH_4NO_3 est une espèce chimique qui entre fréquemment dans la composition des engrais chimiques car elle apporte des ions nitrate NO_3^- , directement assimilables par les plantes, et des ions ammonium NH_4^+ qui doivent être transformés par les bactéries du sol pour être assimilables et ont donc un effet retard.

- **A.1.** Ecrire la configuration électronique de l'atome de potassium.
- **A.2.** Indiquer la position de l'élément potassium dans le tableau périodique. Justifier votre réponse.
- **A.3.** Quel pourcentage d'azote en masse contient le nitrate d'ammonium ?
- **A.4.** Proposer une structure de Lewis pour l'ion nitrate NO₃⁻ (l'atome d'azote est l'atome central de l'ion nitrate).
- **A.5.** Comparer les longueurs des liaisons N–O dans l'ion nitrate.
- **A.6.** Donner la représentation tridimensionnelle de l'ion nitrate et nommer sa géométrie en la justifiant dans le cadre du modèle VSEPR. Donner la valeur de l'angle ONO.

On se propose de titrer un engrais liquide dont la composition est donnée sur l'étiquette fournie dans le **document 1**.

Document 1 : indications figurant sur l'étiquette de l'engrais liquide étudié

FERTITER

Engrais NF U 42-001

ENGRAIS NPK 4-5-7

4 % d'AZOTE (N) total dont :

2,5 % d'azote ammoniacal

1,5 % d'azote nitrique

5 % d'ANHYDRIDE PHOSPHORIQUE (P₂O₅) soluble dans le citrate d'ammonium neutre et dans l'eau dont 4 % soluble dans l'eau

7 % d'OXYDE DE POTASSIUM (K₂O) soluble dans l'eau

L'azote nitrique est l'élément azote contenu dans l'ion nitrate NO₃⁻. Il est absorbé rapidement par les plantes.

L'azote ammoniacal est l'élément azote contenu dans l'ion ammonium NH₄⁺. Il est absorbé beaucoup plus lentement par les cultures.

Les pourcentages indiqués sont des pourcentages en masse. D'après l'étiquette ci-contre, 100 kg d'engrais contient 4 kg d'azote.

Le titrage effectué est un titrage par différence.

Le protocole expérimental est décrit dans le document 2.

Document 2 : protocole de titrage des ions nitrate dans l'engrais liquide étudié

<u>Préparation de l'engrais :</u>

Peser m = 4,0 g d'engrais liquide et les introduire dans une fiole jaugée de 250 mL. Compléter jusqu'au trait de jauge avec de l'eau distillée puis homogénéiser cette solution notée S₀.

Dans un ballon, introduire V_{S0} = 20,0 mL de la solution S_0 , V_{Fe} = 15,0 mL d'une solution de sel de Mohr de concentration C_{Fe} = 0,200 mol·L⁻¹. Ajouter lentement 10,0 mL d'acide sulfurique concentré.

Remarque:

- Le sel de Mohr est un solide de formule brute (NH₄)₂Fe(SO₄)₂,6H₂O.
- 1 mole de sel de Mohr libère 1 mole d'ions Fe²⁺.

Adapter un réfrigérant et porter le mélange réactionnel à ébullition pendant 5 minutes tout en agitant. Laisser ensuite revenir le mélange réactionnel à température ambiante.

Titrage de l'excès d'ions Fe^{2+} :

Verser le mélange réactionnel dans un bécher de 150 mL. Rincer le ballon avec 20 mL d'eau distillée. Le volume total de solution contenue dans le bécher est noté V₁.

Introduire dans la burette graduée une solution de permanganate de potassium de concentration $C_{MnO4} = 0,0200 \text{ mol} \cdot L^{-1}$. Plonger les électrodes dans le bécher contenant le mélange réactionnel. Mesurer la différence de potentiel entre les deux électrodes après chaque ajout de la solution de permanganate de potassium en prenant soin de resserrer les points autour de l'équivalence.

Le volume équivalent déterminé par l'exploitation du suivi potentiométrique est $V_{eq} = 19,3 \text{ mL}$.

Préparation de l'engrais

- **A.7.** Ecrire l'équation de la réaction entre les ions nitrate contenus dans la solution S_0 et les ions ferreux Fe^{2+} présents dans le sel de Mohr.
- **A.8.** Justifier le fait que l'on ne puisse pas titrer directement la solution S_0 contenant les ions nitrate par la solution de sel de Mohr.

Titrage de l'excès d'ions Fe²⁺

- **A.9.** Ecrire l'équation de la réaction de titrage entre les ions Fe²⁺ en excès et les ions permanganate.
- **A.10.** Aurait-on pu envisager de réaliser un titrage colorimétrique ? Justifier votre réponse en vous aidant du tableau mentionnant la couleur des ions en solution aqueuse (voir données en page 13).
- **A.11.** Donner le nom de deux électrodes que l'on peut utiliser pour réaliser ce titrage et indiquer leur rôle.
- **A.12.** Définir l'équivalence d'un titrage
- **A.13.** Donner l'expression de la quantité d'ions Fe^{2+} restante titrée $n(Fe^{2+})_{titrée}$ en fonction du volume équivalent V_{eq} et de C_{MnO4} .

Détermination de la masse d'azote nitrique dans l'engrais liquide

A.14. Montrer que la quantité d'ions nitrate titrée dans la prise d'essai de 20,0 mL de la solution S₀ s'écrit :

$$n\left(NO_{3}^{-}\right)_{dos\acute{e}} = \frac{1}{3} \left[C_{Fe}.V_{Fe} - 5.C_{MnO4}.V_{eq}\right]$$

- A.15. Calculer la masse d'azote nitrique présente dans les 250 mL de la solution S₀.
- **A.16.** En déduire si l'indication du fabricant est fiable.

Partie B : cause et traitement de la méthémoglobinémie

Dans l'organisme, des bactéries peuvent transformer les ions nitrate en ions nitrite NO₂⁻ beaucoup plus toxiques, en particulier pour le nourrisson.

Au sein de l'organisme, les ions fer (II) se complexent au noyau porphyrine pour former l'hème b (notée ci-après porphyrine-Fe²⁺) présente dans l'hémoglobine et permettant le transport du dioxygène dans le sang. L'ion nitrite peut oxyder l'ion fer (II) de l'hème b en ion fer (III), empêchant dès lors l'oxygénation des tissus :

$$NO_{2^{-}(aq)}^{-} + porphyrine-Fe^{2+}_{(aq)} + 2 H^{+}_{(aq)} = NO_{(g)} + porphyrine-Fe^{3+}_{(aq)} + H_{2}O$$
 (2)

À la suite de cette oxydation, l'hème b est nommée hématine (notée porphyrine-Fe³⁺) et l'hémoglobine devient la méthémoglobine. Les structures de l'hème b et de l'hématine sont représentées dans le **document 3**.

La transformation hémoglobine-méthémoglobine conduit à une maladie appelée méthémoglobinémie qui peut être mortelle si le taux de transformation de l'hémoglobine en méthémoglobine atteint ou dépasse 70 % (voir **document 4**).

Document 3 : structures de l'hème b présente dans l'hémoglobine et de l'hématine présente dans la méthémoglobine

Document 4 : conséquence de la présence de méthémoglobine dans le sang

% méthémoglobine	Symptômes
0 à 15	Aucun
15 à 20	Coloration anormalement bleutée de la peau
20 à 45	Vertiges, céphalées, syncope
45 à 55	Troubles de la conscience
55 à 70	Coma, convulsions, défaillance circulatoire
> 70	Mort en l'absence du traitement

- **B.1.** Indiquer la valeur du nombre d'oxydation de l'atome d'azote dans l'ion nitrite NO₂⁻.
- **B.2.** Ecrire les expressions des potentiels d'oxydoréduction des couples mis en jeu dans la réaction (2). Afin d'alléger l'écriture des expressions demandées, on adoptera la notation suivante :
 - Le potentiel du couple porphyrine-Fe³⁺(aq)/porphyrine-Fe²⁺(aq) sera noté E₁ et son potentiel standard E°₁.
 - Le potentiel du couple NO₂-(aq)/NO(aq) sera noté E₂ et son potentiel standard E°₂.
- **B.3.** Exprimer la constante d'équilibre de la réaction (2) et calculer sa valeur. Conclure.

On souhaite doser la méthémoglobine dans le sang d'un patient atteint de méthémoglobinémie par la méthode d'Evelyn-Malloy. Une prise de sang est ainsi effectuée sur le patient. Le sang collecté est ensuite hémolysé (destruction des globules rouges contenus dans le sang pour libérer l'hémoglobine et la méthémoglobine) puis centrifugé. L'hémolysat obtenu contient alors (voir **document 5**):

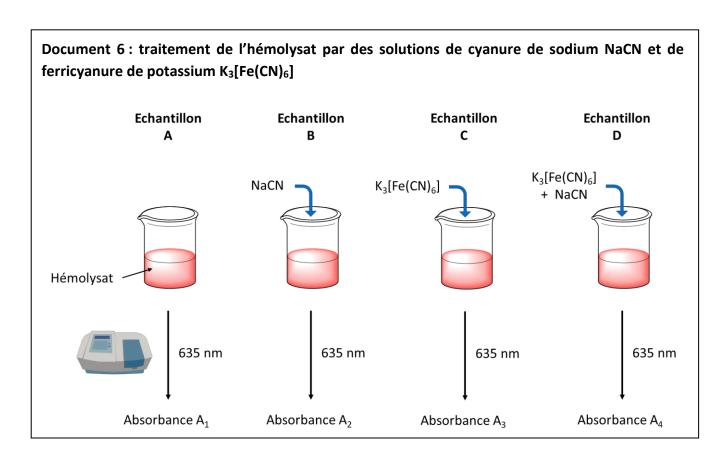
- de l'hémoglobine libre (Hb);
- de l'hémoglobine oxygénée (HbO₂);
- de la méthémoglobine (MetHb);
- des impuretés

Document 5: préparation de l'hémolysat à partir du sang d'un patient atteint de méthémoglobinémie

Hémolyse puis centrifugation du sang

Hémolysat | Hémolysat | Hemolysat | H

L'hémolysat est traité par ajout de cyanure de sodium NaCN et/ou de ferricyanure de potassium $K_3[Fe(CN)_6]$ en excès (voir **document 6**):


• Le cyanure de sodium transforme la méthémoglobine en cyanméthémoglobine (cyanMetHb) :

MetHb
$$\rightarrow$$
 cyanMetHb

• Le ferricyanure de potassium oxyde complètement l'hémoglobine libre et oxygénée en méthémoglobine :

$$Hb \rightarrow MetHb$$

 $HbO_2 \rightarrow MetHb$

L'absorbance de chaque échantillon est ensuite mesurée à une longueur d'onde de 635 nm. À cette longueur d'onde la cyanméthémoglobine et l'hémoglobine oxygénée n'absorbent pas le rayonnement incident.

B.4. Quelle relation permet de relier l'absorbance mesurée à la concentration d'une espèce colorée dans un échantillon ? Donner son expression ainsi que le nom et les unités de chaque grandeur.

B.5. Reproduire et compléter le tableau ci-dessous en indiquant la composition des échantillons B, C et D.

Echantillon	Α	В	С	D
Composition	Hb			
	HbO ₂			
	MetHb			
	impuretés			
Absorbance	$A_1 = 0.37$	$A_2 = 0,24$	A ₃ = 0,79	A ₄ = 0,08

- **B.6.** En fonction d'une ou plusieurs des valeurs d'absorbance A_i (i = 1 à 4) indiquées dans le tableau de la question **B.5**, exprimer l'absorbance due uniquement à la présence de méthémoglobine MetHb dans le sang du patient.
- **B.7.** Exprimer le pourcentage de méthémoglobine dans le sang en fonction des absorbances A_1 , A_2 , A_3 et A_4 . Calculer sa valeur et conclure.

Dans les cas les moins graves, la méthémoglobinémie peut être traitée par administration orale d'acide ascorbique (vitamine C) qui permet la réduction de la méthémoglobine en hémoglobine.

L'acide ascorbique représenté ci-contre est naturellement présent dans de nombreux fruits et légumes. Il peut aussi être synthétisé industriellement. Dans le **document 7** figurent les premières étapes d'une synthèse élaborée à partir du 3-chlorocatechol **A** (M. Banwell et al., *J. Chem.Soc.,Perkin Trans. 1*, **1998**, 3141).

Acide ascorbique

- **B.8.** Déterminer la configuration de l'atome de carbone asymétrique repéré par un astérisque sur la structure de l'acide ascorbique.
- **B.9.** La molécule d'acide ascorbique est-elle chirale ? Justifier la réponse.
- **B.10.** Ecrire un mécanisme pour la synthèse du composé **B**. Quel est le rôle de l'APTS lors de cette étape ?
- **B.11.** Proposer un réactif permettant d'effectuer la transformation $\mathbf{B} \to \mathbf{C}$. Quel est le nom de la fonction créée ?
- B.12. Quel(s) type(s) de sélectivité(s) est (sont) observée(s) lors de l'étape B → C ? Justifier la (ou les) sélectivité(s) observée(s). On admettra que l'atome de chlore exerce un effet électroattracteur sur le reste de la molécule B.

Document 7: étapes initiales de la synthèse de l'acide ascorbique à partir du 3-chlorocatecol

D

- **B.13.** Le passage de **C** à **D** est effectué en présence d'un acide organique. Pourquoi est-il nécessaire de travailler dans des conditions anhydres lors de cette étape ?
- **B.14.** Sans tenir compte de la stéréochimie, proposer un mécanisme d'ouverture du cycle à 3 atomes sachant qu'il se forme un carbocation intermédiaire.
- **B.15.** Pourquoi l'alcool benzylique BnOH se fixe-t-il préférentiellement sur l'atome de carbone 5 du cycle plutôt que l'atome de carbone 6 ?

Partie C : utilisation du chitosane comme dépolluant des eaux trop riches en ions nitrate

On estime à plus de deux tiers la pollution des eaux souterraines par les ions nitrate d'origine agricole, le reste provenant des rejets domestiques et industriels. Dans plusieurs régions agricoles, la teneur en ions nitrate des eaux souterraines dépasse largement la norme de potabilité établie par l'Organisation Mondiale de la Santé à 50 mg·L⁻¹.

Devant ces risques permanents, la dénitratation des eaux devient dans ces cas une obligation. Une méthode testée est la dénitrification biologique par une molécule polymère adsorbante, le chitosane, dont la structure est présentée dans le **document 8**.

C.1. Donner une représentation de Cram du motif M figurant dans le **document 8**.

Le chitosane est obtenu par hydrolyse basique de la chitine, polymère naturel présent dans la carapace de plusieurs crustacés et mollusques. Sa structure est indiquée dans le **document 9**.

La méthode de préparation la plus commune consiste à tremper la chitine dans un bain de soude (Na⁺; HO⁻) à 50 % à une température de 100 °C pendant une durée de 4 heures.

D'autres dérivés de la chitine, comme l'éthylchitine représentée dans le **document 10**, existent. Ces dérivés de la chitine sont utilisés dans des domaines variés parmi lesquels le biomédical, la cosmétique, l'acoustique, l'industrie textile...

- **C.2.** En milieu acide (pH = 4), le chitosane est soluble dans l'eau alors que la chitine ne l'est pas. Proposer une explication à l'aide des grandeurs thermodynamiques présentes dans les données.
- **C.3.** La réactivité de la fonction amide vis-à-vis d'une hydrolyse basique étant analogue à celle de la fonction ester, proposer un mécanisme de formation du chitosane à partir de la chitine.
- **C.4.** Proposer une suite réactionnelle en deux étapes permettant de synthétiser l'éthylchitine à partir de la chitine. Indiquer la nature de chacune des étapes.

Une expérience d'adsorption a été menée sur un effluent à traiter contenant une concentration initiale élevée en ions nitrate $[NO_3^-]_0 = 120 \text{ mg} \cdot \text{L}^{-1}$. Le pH du milieu est maintenu à une valeur fixe égale à 6. Dans le tableau ci-dessous sont collectées les valeurs de concentration en ion nitrate au cours du temps :

[NO ₃ ⁻] (en mg·L ⁻¹)	120	99	82	69	39	19
temps (en min)	0	5	10	15	30	50

- **C.5.** Expliquer comment les ions nitrates peuvent s'adsorber sur les polymères de chitosane introduits dans l'effluent.
- **C.6.** Montrer que l'adsorption des ions nitrate sur le chitosane suit une cinétique d'ordre 1.
- **C.7.** Déterminer la constante de vitesse de la réaction d'adsorption des ions nitrate sur le chitosane.
- **C.8.** Etablir l'expression du temps au bout duquel la moitié des ions nitrate de l'effluent seront adsorbés. Calculer sa valeur.

Partie D : le nitrate d'ammonium, un explosif redoutable

Le nitrate d'ammonium NH₄NO₃ est un produit stable à température et pression ambiantes. Cependant, il possède des propriétés comburantes. À partir de 230 °C, le nitrate d'ammonium se décompose pour donner de l'oxyde nitreux N₂O gazeux et de l'eau.

D.1. Ecrire l'équation bilan de la réaction de décomposition du nitrate d'ammonium à 230 °C en précisant l'état physique de toutes les espèces chimiques.

Autour de 300 °C, s'il est confiné et contaminé par des matières organiques ou métalliques divisées, le nitrate d'ammonium devient explosif et forme des gaz toxiques. La catastrophe récente du port de Beyrouth le 04 août 2020 illustre bien le fait que le nitrate d'ammonium nécessite des conditions de stockage très précises.

L'équation (1) suivante représente une des réactions à T = 300 °C qui contribuent à son explosion :

$$4 NH_4NO_{3(s)} = 3 N_{2(g)} + 2 NO_{2(g)} + 8 H_2O_{(g)}$$
 (1)

- **D.2.** En se plaçant dans le cadre de l'approximation d'Ellingham, déterminer l'enthalpie standard de réaction de la réaction (1). Commenter le signe obtenu pour cette grandeur.
- **D.3.** Dans le cadre de cette même approximation, déterminer l'entropie standard de réaction de la réaction (1). Commenter le signe obtenu pour cette grandeur.
- **D.4.** Exprimer la constante d'équilibre de la réaction (1) en fonction des enthalpie et entropie standard de réaction. Estimer la valeur de cette constante à 300 °C. Conclure.
- **D.5.** On estime qu'environ 600 tonnes de nitrate d'ammonium sur les 2750 tonnes stockées ont provoqué l'explosion du port de Beyrouth. Quel volume de gaz aurait été produit si le nitrate d'ammonium avait explosé selon les conditions de la réaction (1) ? On supposera les gaz parfaits (voir **document 11**), une pression constante P = 10⁵ Pa et une température T = 300 °C.

Document 11: La loi des gaz parfaits

Un gaz est dit parfait si les molécules constitutives de ce gaz sont ponctuelles et sans interactions entre elles (la pression est peu élevée pour que les molécules soient éloignées les unes des autres). Pour ce type de gaz, on peut définir une relation, appelée **loi des gaz parfaits**, reliant ses diverses variables d'état :

$$P.V = n.R.T$$

P désigne la pression totale (en Pa), V le volume total (en m³), n la quantité de matière totale de gaz (en mol) et T la température (en K). R est la constante des gaz parfaits (en J·K⁻¹·mol⁻¹).

Données à 298 K

Elément	Н	N	0	К
Numéro atomique Z	1	7	8	19
Masse molaire M (g·mol ⁻¹)	1	14	16	39

Données supplémentaires pour la partie A :

Couple	$NO_3^{-}_{(aq)}/NO_{(g)}$	$Fe^{3+}_{(aq)}/Fe^{2+}_{(aq)}$	$MnO_4^{(aq)}/Mn^{2+}_{(aq)}$
Potentiel standard E° (en V)	0,94	0,69	1,51

Couleur des ions en solution aqueuse :

Ion	MnO ₄ ⁻	Mn ²⁺	Fe ²⁺	Fe ³⁺
Couleur	violette intense	incolore	vert pâle	orange pâle

Données supplémentaires pour la partie B :

Couple	porphyrine-Fe ³⁺ /porphyrine-Fe ²⁺	$NO_2^{-}_{(aq)}/NO_{(g)}$
Potentiel standard E° (en V)	0,14	1,20

Données supplémentaires pour la partie C :

Couple	R-(COH ⁺)-NH ₂ /R-(CO)-NH ₂	ROH ₂ +/ROH	RNH ₃ +/RNH ₂
рК _А	-2	-0,5	10

$$\frac{RT}{F} ln(10) = 0.06 V$$

Données supplémentaires pour la partie D :

Enthalpies standard de formation $\Delta_f H^{\circ}$ et entropies molaires standard S_m° :

Espèce	NH ₄ NO _{3(s)}	$N_{2(g)}$	NO _{2(g)}	$H_2O_{(g)}$
$\Delta_{\mathrm{f}}H^{\circ}$ (kJ·mol ⁻¹)	-365,2	0	33,2	-241,8
S _m ° (J·mol ⁻¹ ·K ⁻¹)	151,1	191,5	240,1	188,7

Constante des gaz parfaits : $R = 8,314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 $T (K) = 273 + T (^{\circ}C)$ $In(A) = In(10) \times Iog(A)$

FIN DU SUJET