Programme de Chimie du concours B 2021 (version Novembre 2020)

1 CHIMIE GENERALE

1.1 Atomistique et classification périodique

L'atome : noyau, isotopie, électrons.	Aucune notion de radioactivité n'est exigible.
Atome monoélectronique : fonctions d'onde, nombres	La connaissance des expressions analytiques des
quantiques n , l , m_l et m_s .	fonctions d'onde n'est pas exigible.
Représentations graphiques des fonctions d'onde s, p,	
d.	
Atome polyélectronique : orbitales atomiques.	
Configuration électronique : principe de PAULI, règle	
de KLECHKOWSKI. Règle de HUND.	
Électrons de cœur, électrons de valence.	
Construction de la classification périodique des	
éléments : analyse par périodes et par colonnes.	
Notion de rayon atomique.	
Électronégativité : évolution dans la classification	Les définitions précises des différentes échelles
périodique.	d'électronégativité ne sont pas exigibles.

1.2 Édifices chimiques

Liaison covalente	
Représentation de LEWIS pour des molécules simples,	
règle de l'octet et ses limites (lacunes, composés	
hypervalents, molécules à nombre impair d'électrons).	
Moment dipolaire.	Aucun calcul n'est exigé.
Prévision de la géométrie des molécules par la	On se limitera aux composés de formule AX _n E _p avec
méthode de répulsion des paires électroniques de la	<i>n</i> + <i>p</i> ≤ 4
couche de valence (dite VSEPR).	
Conjugaison, mésomérie, formules mésomères.	Cette partie peut être traitée en chimie organique
	structurale.
Liaisons faibles	
Liaison hydrogène : origine, ordre de grandeur de	Les conséquences sur les propriétés chimiques sont
l'énergie de liaison, géométrie.	explicitement mentionnées, mais aucune étude des
Forces de VAN DER WAALS.	solvants ne rentre dans le champ de ce programme.
	Cette étude reste descriptive et peut ouvrir sur des
	exemples pris en biochimie.

1.3 Thermodynamique chimique

On se limite à l'étude de systèmes physico-chimiques fermés.

Système physico-chimique fermé	
Définition.	
Description d'un système chimique en réaction :	
Avancement de la réaction.	
Définition des fonctions d'état H, S et G.	Les fonctions H, S et G, sont seules exigibles.
Différentielles des fonctions d'état.	Les forietions 11, 3 et d, sont seules exigibles.
Expression du potentiel chimique.	L'expression du potentiel chimique doit être connue :
Expression du potentier chimique.	 pour un gaz parfait pur, pour un gaz parfait pris dans un mélange idéal;
	 pour les solutions idéales et les solides.
	L'influence de la pression sur le potentiel chimique
	pour les phases condensées n'est pas étudiée.
	Aucune démonstration n'est exigible.
Etat standard, état standard de référence.	Ne sont exigibles que l'enthalpie molaire standard,
Grandeurs standard.	l'entropie molaire standard, ainsi que l'enthalpie libre
	molaire standard.
Grandeurs de réaction	
Définition des grandeurs de réaction associées aux	
fonctions d'état H, S et G.	
Signification des grandeurs de réaction.	Pour un système physico-chimique siège d'une seule
	transformation physico-chimique évoluant de manière
	isobare et isotherme, on tracera l'enthalpie libre d'un
	système en fonction de l'avancement de la réaction.
Expression de l'enthalpie libre de réaction en fonction	Cas des gaz parfaits, des solutions diluées,
de l'activité	des solvants et des corps purs en phase condensée.
Calcul des grandeurs standard de réaction	Ne sont exigibles que :
Loi de HESS.	 les enthalpies standard de formation ;
	 les enthalpies standard de dissociation de liaison;
	 les enthalpies standard de changement d'état
	 les entropies molaires standard.
Variation des grandeurs standard : approximation	On indiquera que les grandeurs standard sont des
d'ELLINGHAM.	fonctions de la température mais qu'un certain
a ELLINOTIAIVI.	nombre de cas peuvent se traiter dans l'approximation
	d'ELLINGHAM.
	La relation de KIRCHOFF est hors programme.
Chaleurs de réaction.	Ne sont exigibles que les chaleurs de réaction à
Charles de redellotti	pression constante.
	Est exigible la relation entre transfert thermique reçu
	par un système physico-chimique en évolution à
	pression et température constantes, l'enthalpie de
	réaction et l'avancement de la réaction.
Étude d'un système physico-chimique à l'équilibre	
Condition d'équilibre d'un système physico-chimique.	
Relation entre $\Delta_r G^\circ$ et Q_r .	
Constante thermodynamique d'équilibre K° . Influence	
de la température sur <i>K</i> ° (loi de VAN'T HOFF)	
22 .2 .2po. aca. o oa (.o. ac 7/11/1/10/1/	

Étude de système physico-chimique proche de l'équilibre	
Critère d'évolution d'un système physico-chimique	
évoluant de manière isobare et isotherme. Cas de	
réactions couplées.	
Lois de déplacement d'équilibres.	Seules sont exigibles les influences :
	· de la température ;
	· de la pression.

1.4 Solutions aqueuses

Les problèmes de solutions aqueuses pourront combiner toutes les parties du programme pour se rapprocher de cas concrets : par exemple, influence du pH sur la solubilité ou le potentiel d'oxydoréduction. Leur résolution pourra être menée à l'aide de méthodes simples comme celle de la réaction prépondérante mais ne devra en aucun cas entraîner des calculs compliqués.

Acido-basicité Acides et bases de BRÖNSTED, couples acido-basiques dans l'eau. Force des acides et des bases, pK _A , domaines de prédominance. Calcul de pH de solutions classiques : acides et bases faibles et forts, ampholytes. Effet tampon, solutions tampon. Complexes en solution aqueuse Constantes de formation (globale β, successive κ _f), de dissociation (κ _d). Domaines de prédominance. Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
dans l'eau. Force des acides et des bases, pKA, domaines de prédominance.aminés lors d'une variation de pH.Calcul de pH de solutions classiques : acides et bases faibles et forts, ampholytes.On se limite aux cas simples et à des gammes de concentration réalistes, en évitant toute dérive calculatoire.Effet tampon, solutions tampon.La notion d'efficacité d'une solution tampon est hors programme.Complexes en solution aqueuseConstantes de formation (globale β, successive K₁), de dissociation (Ka₁). Domaines de prédominance.Composés peu solublesOn ne limite pas les exemples aux précipités ioniques.Réactions de précipitation, produit de solubilité.On ne limite pas les exemples aux précipités ioniques.Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun).On ne limite pas les exemples aux précipités ioniques.Transferts d'électrons en phase aqueuseCouples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH.La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
domaines de prédominance. Calcul de pH de solutions classiques : acides et bases faibles et forts, ampholytes. Effet tampon, solutions tampon. Complexes en solution aqueuse Constantes de formation (globale β, successive κ _f), de dissociation (κ _d). Domaines de prédominance. Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. Constantes de solution tampon est hors programme. Con ne limite pas les exemples aux précipités ioniques. On ne limite pas les exemples aux précipités ioniques. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Calcul de pH de solutions classiques : acides et bases faibles et forts, ampholytes.On se limite aux cas simples et à des gammes de concentration réalistes, en évitant toute dérive calculatoire.Effet tampon, solutions tampon.La notion d'efficacité d'une solution tampon est hors programme.Complexes en solution aqueuseLa notion d'efficacité d'une solution tampon est hors programme.Constantes de formation (globale β, successive Kj), de dissociation (Kd). Domaines de prédominance.On ne limite pas les exemples aux précipités ioniques.Réactions de précipitation, produit de solubilité.On ne limite pas les exemples aux précipités ioniques.Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun).On ne limite pas les exemples aux précipités ioniques.Transferts d'électrons en phase aqueuseCouples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH.La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
faibles et forts, ampholytes. Effet tampon, solutions tampon. La notion d'efficacité d'une solution tampon est hors programme. Complexes en solution aqueuse Constantes de formation (globale β, successive κ _f), de dissociation (κ _d). Domaines de prédominance. Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Effet tampon, solutions tampon.La notion d'efficacité d'une solution tampon est hors programme.Complexes en solution aqueuseConstantes de formation (globale β, successive Kf), de dissociation (Kd). Domaines de prédominance.Composés peu solublesOn ne limite pas les exemples aux précipités ioniques.Réactions de précipitation, produit de solubilité.On ne limite pas les exemples aux précipités ioniques.Solubilité : définition et calcul sur des exemplesFacteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun).Transferts d'électrons en phase aqueuseTransferts d'électrons en phase aqueuseCouples oxydants réducteurs, nombre d'oxydation.Influence de la précipitation et de la complexation ; influence du pH.Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST.La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Effet tampon, solutions tampon. Complexes en solution aqueuse Constantes de formation (globale β, successive K _f), de dissociation (K _d). Domaines de prédominance. Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La notion d'efficacité d'une solution tampon est hors programme. La notion d'efficacité d'une solution tampon est hors programme.
programme.Complexes en solution aqueuseConstantes de formation (globale β, successive κ _f), de dissociation (κ _d). Domaines de prédominance.Composés peu solublesRéactions de précipitation, produit de solubilité.On ne limite pas les exemples aux précipités ioniques.Solubilité : définition et calcul sur des exemplesFacteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun).Transferts d'électrons en phase aqueuseCouples oxydants réducteurs, nombre d'oxydation.Influence de la précipitation et de la complexation ; influence du pH.La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Complexes en solution aqueuse Constantes de formation (globale β , successive K_f), de dissociation (K_d). Domaines de prédominance. Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité: définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Constantes de formation (globale β, successive K _f), de dissociation (K _d). Domaines de prédominance. Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Composés peu solubles Réactions de précipitation, produit de solubilité. Solubilité: définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Réactions de précipitation, produit de solubilité. Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Solubilité : définition et calcul sur des exemples Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Facteurs de la solubilité (température, réaction des espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
espèces dissoutes, effet d'ion commun). Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Transferts d'électrons en phase aqueuse Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Couples oxydants réducteurs, nombre d'oxydation. Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Influence de la précipitation et de la complexation ; influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
influence du pH. Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
Potentiel d'électrode, potentiel d'oxydoréduction, formule de NERNST. La formule de NERNST est admise sans démonstration. On insiste sur la nécessité de constituer une chaîne
formule de NERNST. On insiste sur la nécessité de constituer une chaîne
Martin Martin and the Control of the
électrochimique pour atteindre les grandeurs
mesurables : les différences de potentiel.
L'étude exhaustive des électrodes n'est pas au
programme, mais le potentiel d'électrode est défini
pour l'ESH, une électrode de référence, une électrode
métallique (dite de 1 ^{ère} espèce) et une électrode redox
(dite de 3 ^{ème} espèce).
Enthalpie libre d'une réaction d'oxydoréduction, La relation $\Delta rG = -nFE$ est admise sans démonstration
constante thermodynamique d'équilibre, exemples de
dismutation.
Influence de la précipitation et de la complexation ;
influence du pH.

1.5 Cinétique chimique

Degré d'avancement.	On se limite aux systèmes isochores et isothermes.
Vitesse de réaction.	
Ordre, constante de vitesse.	
Dégénérescence de l'ordre.	
Énergie d'activation, loi d'ARRHENIUS.	
Cinétique formelle	
Réactions simples : loi de vitesse pour les réactions	
d'ordre zéro, un et deux.	
Temps de demi-réaction.	
Méthodes de détermination de l'ordre à partir de	données expérimentales
Méthode intégrale à partir des valeurs des	
concentrations en fonction du temps.	
Méthode des temps de demi-réaction.	
Méthode différentielle.	
Catalyse	
L'étude est limitée à la définition et au rôle d'un	
catalyseur	

2 CHIMIE ORGANIQUE

L'étude de plusieurs fonctions est proposée dans cette partie. Pour chaque transformation chimique, le mécanisme réactionnel est à connaître sauf lorsqu'il est clairement mentionné que celui-ci ne sera pas envisagé.

2.1 Chimie organique générale

Règles élémentaires de nomenclature de l'UICPA.	
Représentation et géométrie des molécules	L
Formule brute, degré d'insaturation, formules	
développée et semi-développée.	
Représentations de CRAM et de FISCHER. Ecriture	
topologique	
Conformations, cas du cyclohexane. Notion	
d'interconversion chaise-chaise et de conformation	
bloquée.	
Isomérie <i>cis-trans</i> des cycles.	
Isomérie géométrique : configuration Z/E des alcènes.	
Isomérie optique : chiralité, carbone asymétrique.	La nomenclature érythro-thréo n'est pas utilisée.
Enantiomères, diastéréoisomères.	
Configuration absolue, descripteur stéréochimique	
(nomenclature R, S). Nomenclature D, L pour les	
sucres et les acides aminés.	
Activité optique, pouvoir rotatoire, loi de BIOT	
La réaction chimique organique	
Les différents modes de rupture et de formation de liaisons.	
Intermédiaires réactionnels : carbocations, carbanions	La stabilité des intermédiaires est envisagée à l'aide des effets électroniques inductif et mésomère.
Notion de nucléophiles et d'électrophiles.	
Nature des réactions organiques : substitution,	
élimination, addition.	
Mécanismes de réaction : cinétique, profil	
énergétique de réaction.	
Notion de catalyse.	

2.2 Alcènes

Hydrogénation catalytique, stéréospécificité de la réaction.	
Réactions d'addition électrophile	
Addition d'hydracide. Addition d'eau.	L'aspect cinétique et la régiosélectivité de l'hydrohalogénation et de l'hydratation sont interprétés à l'aide des effets électroniques (règle de MARKOVNIKOV).
Epoxydation-hydroxylation	
Époxydation (action d'un peracide - mCPBA).	Le mécanisme n'est pas envisagé
Ouverture d'époxydes en milieu basique et par des nucléophiles variés : alcools, amines, organomagnésiens	La régiosélectivité et la stéréosélectivité de l'ouverture de l'époxyde doivent pouvoir être justifiées.

2.3 Monohalogénoalcanes

Substitution nucléophile : mécanismes limites SN1 et	Aucune discussion ne porte sur l'effet du solvant.
SN2	
Réaction d'élimination : mécanismes limites E1 et E2.	
Règle de ZAÏTSEV	
Dérivés organomagnésiens : préparation ; propriétés	On étudie la réaction des organomagnésiens sur le
basiques et nucléophiles.	dioxyde de carbone CO ₂ , en plus des additions
	nucléophiles mentionnées plus bas.

2.4 Alcools

Rupture de la liaison O-H		
Acidité (ordre de grandeur des p K_A). Nucléophilie de		
l'ion alcoolate.		
Réactions nucléophiles		
Substitution nucléophile : formation d'éthers		
(méthode de WILLIAMSON).		
Addition nucléophile sur un groupe carbonyle :		
formation d'acétals.		
Additions nucléophiles sur les acides carboxyliques et		
leurs dérivés : réactions sur les acides carboxyliques et		
les chlorures d'acyle.		
Rupture de la liaison C-O		
Activation de la fonction alcool en milieu acide ou par		
formation d'ester sulfonique.		
Réactions de substitution nucléophile.		
Réaction d'élimination (déshydratation).		
Réactions d'oxydation		
Oxydation du méthanol et des autres alcools	N'est pas exigée la connaissance des différents réactifs	
primaires. Oxydation en aldéhyde, sur-oxydation	et de leur action plus ou moins poussée sur les alcools	
possible en acide carboxylique	primaires.	
Oxydation des alcools secondaires.		

2.5 Amines

Basicité, nucléophilie.	
Réaction avec les halogénoalcanes (HOFFMANN)	La pyrolyse des sels d'ammonium quaternaires ne sera
	pas envisagée.

2.6 Aldéhydes et cétones

Réactions d'addition nucléophile		
Addition d'alcools : formation d'hémiacétals et	On insiste sur la renversabilité de la réaction et son	
d'acétals.	application dans une séquence « protection-	
Cyclisation du glucose, mutarotation.	déprotection » d'une fonction.	
Action des organomagnésiens : formation des alcools.		
Réactions de réduction		
Par les hydrures métalliques : NaBH₄	Le mécanisme ne sera pas envisagé	
Réactions dues à la mobilité de proton(s) en α du groupement carbonyle		
Énolisation.		
Alkylation.	On se limite à la C-alkylation sans évoquer la	
	O-alkylation.	
Aldolisation, cétolisation, crotonisation.	Seules des conditions de réaction en milieu basique	
	sont envisagées, sans mécanisme de crotonisation. La	
	réaction de CANNIZZARO n'est pas étudiée.	

2.7 Acides carboxyliques et dérivés d'acides

Acidité des acides carboxyliques.		
Formation d'esters et d'amides		
Estérification des acides carboxyliques.		
Formation d'esters, d'amides à partir de chlorure	La formation des chlorures d'acyle à partir de SOCl ₂	
d'acyle et d'anhydride d'acide.	sera mentionnée.	
Hydrolyse des dérives d'acide carboxylique		
Hydrolyse des esters :		
en milieu acide ;		
en milieu basique (saponification).		
Action nucléophile sur les esters		
Organomagnésiens mixtes.		

3 TRAVAUX PRATIQUES

Les candidats peuvent être interrogés sur la partie expérimentale de l'enseignement du premier cycle universitaire. Il s'agira pour eux de montrer qu'ils connaissent le matériel, son maniement, son utilité.

Dosages volumétriques acido-basique et redox à l'aide d'indicateurs colorés.	
Tracé de courbes de titrage acido-basique à l'aide d'un pH-mètre.	La nature et le rôle des électrodes utilisées doivent être connus ; leur fonctionnement, en particulier pour l'électrode de verre, ne ressort pas de ce programme.
Tracé de courbes de titrages d'oxydoréduction à l'aide d'un voltmètre (titrage potentiométrique)	
Spectrophotomètre UV-visible ou colorimètre. Loi de BEER-LAMBERT, application et limites.	
Spectroscopie IR	On se limite à caractériser des fonctions à l'aide d'une table fournie.
Utilisation du montage à reflux et de l'ampoule à	
décanter.	
Chromatographie sur couche mince (CCM)	